Poly(TriArylAmine)-PTAA

Polytriarylamines (PTAAs) are highly soluble amorphous semiconducting polymers. The nitrogen atoms in the polymer backbone limit delocalization of \(\pi \) electrons between adjacent phenyl units and resulting in low lying HOMO energy levels and excellent oxidative stability. Recently, they have been found of great use in strategically boosting the performance of PEROVSKITE solar cells. 1M has reproduced the following PTAAs constantly for your research and development needs.

<table>
<thead>
<tr>
<th>IM Code</th>
<th>Common Name</th>
<th>Structure</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| PH0999 | PTAA-3Me | ![Structure](structure1.png) | CAS#1333317-99-9
Mw ~ 20K |
| PH0100 | PTAA-2Me | ![Structure](structure2.png) | CAS#313996-10-0
Mw ~ 30K |
| PH0648 | PTAA-F | ![Structure](structure3.png) | CAS#618108-64-8
Mw ~ 20K |
| PH0104 | PTAA-2F, | ![Structure](structure4.png) | CAS#1414662-10-4
Mw ~ 20K |
| PH0353 | Poly-TPD | ![Structure](structure5.png) | CAS#472960-35-3
Mw ~ 30K |
| PH0299 | PTAA-Butyl | ![Structure](structure6.png) | |
| PE0299 | | | |

Other similar PTAAs are also available, please contact info@1-material.com for more information

Organic Nano Electronic (ONE=1) materials for those who understand quality